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1. Introduction (Vectors)
The base vectors in two dimensional Cartesian coordinates are the
unit vector i in the positive direction of the x axis and the unit vector
j in the y direction. See Diagram 1. (In three dimensions we also
require k, the unit vector in the z direction.)

The position vector of a point P (x, y) in two dimensions is xi + yj .
We will often denote this important vector by r . See Diagram 2. (In
three dimensions the position vector is r = xi + yj + zk .)
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The vector differential operator ∇ , called “del” or “nabla”, is defined
in three dimensions to be:

∇ =
∂

∂x
i +

∂

∂y
j +

∂

∂z
k .

Note that these are partial derivatives!
This vector operator may be applied to (differentiable) scalar func-
tions (scalar fields) and the result is a special case of a vector field,
called a gradient vector field.
Here are two warming up exercises on partial differentiation.

Quiz Select the following partial derivative,
∂

∂z
(xyzx).

(a) x2yzx−1 , (b) 0 , (c) xy logx(z) , (d) yzx−1 .

Quiz Choose the partial derivative
∂

∂x
(x cos(y) + y).

(a) cos(y) , (b) cos(y)− x sin(y) + 1 ,

(c) cos(y) + x sin(y) + 1 , (d) − sin(y) .
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2. Gradient (Grad)
The gradient of a function, f(x, y), in two dimensions is defined as:

gradf(x, y) = ∇f(x, y) =
∂f

∂x
i +

∂f

∂y
j .

The gradient of a function is a vector field. It is obtained by applying
the vector operator ∇ to the scalar function f(x, y) . Such a vector
field is called a gradient (or conservative) vector field.

Example 1 The gradient of the function f(x, y) = x+y2 is given by:

∇f(x, y) =
∂f

∂x
i +

∂f

∂y
j

=
∂

∂x
(x + y2)i +

∂

∂y
(x + y2)j

= (1 + 0)i + (0 + 2y)j
= i + 2yj .
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Quiz Choose the gradient of f(x, y) = x2y3.
(a) 2xi + 3y2j , (b) x2i + y3j ,

(c) 2xy3i + 3x2y2j , (d) y3i + x2j .

The definition of the gradient may be extended to functions defined
in three dimensions, f(x, y, z):

∇f(x, y) =
∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k .

Exercise 1. Calculate the gradient of the following functions (click
on the green letters for the solutions).

(a) f(x, y) = x + 3y2 , (b) f(x, y) =
√

x2 + y2 ,

(c) f(x, y, z) = 3x2√y + cos(3z) , (d) f(x, y, z) =
1√

x2 + y2 + z2
,

(e) f(x, y) =
4y

(x2 + 1)
, (f) f(x, y, z) = sin(x)ey ln(z) .
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3. Directional Derivatives
To interpret the gradient of a scalar field

∇f(x, y, z) =
∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k ,

note that its component in the i direction is the partial derivative of
f with respect to x. This is the rate of change of f in the x direction
since y and z are kept constant. In general, the component of ∇f in
any direction is the rate of change of f in that direction.
Example 2 Consider the scalar field f(x, y) = 3x + 3 in two dimen-
sions. It has no y dependence and it is linear in x. Its gradient is
given by

∇f =
∂

∂x
(3x + 3)i +

∂

∂y
(3x + 3)j

= 3i + 0j .

As would be expected the gradient has zero component in the y di-
rection and its component in the x direction is constant (3).
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Quiz Select a point from the answers below at which the scalar field
f(x, y, z) = x2yz − xy2z decreases in the y direction.

(a) (1,−1, 2) , (b) (1, 1, 1) ,

(c) (−1, 1, 2) , (d) (1, 0, 1) .

Definition: if n̂ is a unit vector, then n̂ ·∇f is called the directional
derivative of f in the direction n̂. The directional derivative is the
rate of change of f in the direction n̂.

Example 3 Let us find the directional derivative of f(x, y, ) = x2yz
in the direction 4i− 3k at the point (1,−1, 1).
The vector 4i−3k has magnitude

√
42 + (−3)2 =

√
25 = 5. The unit

vector in the direction 4i− 3k is thus n̂ = 1
5 (4i− 3k).

The gradient of f is

∇f =
∂

∂x
(x2yz)i +

∂

∂y
(x2yz)j +

∂

∂z
(x2yz)k

= 2xyzi + x2zj + x2yk ,
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and so the required directional derivative is

n̂ ·∇f =
1
5
(4i− 3k) · (2xyzi + x2zj + x2yk)

=
1
5
[
4× 2xyz + 0− 3× x2y

]
.

At the point (1,−1, 1) the desired directional derivative is thus

n̂ ·∇f =
1
5

[8× (−1)− 3× (−1)] = −1 .

Exercise 2. Calculate the directional derivative of the following func-
tions in the given directions and at the stated points (click on the
green letters for the solutions).

(a) f = 3x2 − 3y2 in the direction j at (1,2,3).

(b) f =
√

x2 + y2 in the direction 2i + 2j + k at (0,−2,1).

(c) f = sin(x) + cos(y) + sin(z) in the direction πi + πj at (π,0,π ).



Section 3: Directional Derivatives 10

We now state, without proof, two useful properties of the direc-
tional derivative and gradient.

• The maximal directional derivative of the scalar field f(x, y, z)
is in the direction of the gradient vector ∇f .

• If a surface is given by f(x, y, z) = c where c is a constant, then
the normals to the surface are the vectors ±∇f .

Example 4 Consider the surface xy3 = z+2. To find its unit normal
at (1, 1,−1) , we need to write it as f = xy3− z = 2 and calculate the
gradient of f :

∇f = y3i + 3xy2j − k .

At the point (1, 1,−1) this is ∇f = i + 3j − k. The magnitude of
this maximal rate of change is√

12 + 32 + (−1)2 =
√

11 .

Thus the unit normals to the surface are ± 1√
11

(i + 3j − k).
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Quiz Which of the following vectors is normal to the surface x2yz = 1
at (1,1,1)?

(a) 4i + j + 17k , (b) 2i + j + 2k ,

(c) i + j + k , (d) −2i− j − k .

Quiz Which of the following vectors is a unit normal to the surface
cos(x)yz = −1 at (π,1,1)?

(a) − 1√
2
j +

1√
2
k , (b) πi + j +

2√
π

k ,

(c) i , (d) − 1√
2
j − 1√

2
k .

Quiz Select a unit normal to the (spherically symmetric) surface
x2 + y2 + z2 = 169 at (5,0,12).

(a) i +
1
6
j − 1

6
k , (b)

1
3
i +

1
3
j +

1
3
k ,

(c)
5
13

i +
12
13

k , (d) − 5
13

i +
12
13

k .
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4. Final Quiz
Begin Quiz Choose the solutions from the options given.

1. What is the gradient of f(x, y, z) = xyz−1?
(a) i + j − z−2k , (b)

y

z
i +

x

z
j − xy

z2
k ,

(c) yz−1i + xz−1j + xyz−2k , (d) − 1
z2

.

2. If n is a constant, choose the gradient of f(r) = 1/rn, where
r = |r| and r = xi + yj + zk.

(a) 0 , (b) −n

2
i + j + k

rn+1
, (c) − nr

rn+2
, (d) −n

2
r

rn+2
.

3. Select the unit normals to the surface of revolution, z = 2x2 +2y2

at the point (1,1,4).

(a) ± 1√
3
(i + j − k) , (b) ± 1√

3
(i + j + k) ,

(c) ± 1√
2
(i + j) , (d) ± 1√

2
(2i + 2j − 4k) .

End Quiz
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Solutions to Exercises
Exercise 1(a) The function f(x, y) = x + 3y2 , has gradient

∇f(x, y) =
∂f

∂x
i +

∂f

∂y
j

=
∂

∂x
(x + 3y2)i +

∂

∂y
(x + 3y2)j

= (1 + 0)i + (0 + 3× 2y2−1)j
= i + 6yj .

Click on the green square to return
�
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Exercise 1(b) The gradient of the function

f(x, y) =
√

x2 + y2 = (x2 + y2)
1
2

is given by:

∇f(x, y) =
∂f

∂x
i +

∂f

∂y
j =

∂

∂x
(x2 + y2)

1
2 i +

∂

∂y
(x2 + y2)

1
2 j

=
1
2
(x2 + y2)

1
2−1 × ∂

∂x
(x2)i

+
1
2
(x2 + y2)

1
2−1 × ∂

∂y
(y2)j

=
1
2
(x2 + y2)−

1
2 × 2x2−1i +

1
2
(x2 + y2)−

1
2 × 2y2−1j

= (x2 + y2)−
1
2 xi + (x2 + y2)−

1
2 yj

=
x√

x2 + y2
i +

y√
x2 + y2

j .

Click on the green square to return
�
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Exercise 1(c) The gradient of the function

f(x, y, z) = 3x2√y + cos(3z) = 3x2y
1
2 + cos(3z) ,

is given by:

∇f(x, y, z) =
∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k

= 3y
1
2

∂

∂x
(x2) i + 3x2 ∂

∂y
(y

1
2 ) j +

∂

∂z
(cos(3z))k

= 3y
1
2 × 2x2−1 i + 3x2 × 1

2
y

1
2−1 j − 3 sin(3z) k

= 6y
1
2 x i +

3
2
x2y−

1
2 j − 3 sin(3z) k

= 6x
√

y i +
3
2

x2

√
y

j − 3 sin(3z)k .

Click on the green square to return
�
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Exercise 1(d) The partial derivative of the function

f(x, y, z) =
1√

x2 + y2 + z2
= (x2 + y2 + z2)−

1
2 ,

with respect to the variable x is

∂f

∂x
= −1

2
(x2 + y2 + z2)−

1
2−1 × ∂(x2)

∂x
= − x

(x2 + y2 + z2)
3
2

and similarly the derivatives
∂f

∂y
and

∂f

∂z
are

∂f

∂y
= − y

(x2 + y2 + z2)
3
2

,
∂f

∂z
= − z

(x2 + y2 + z2)
3
2

.

Therefore the gradient is

∇f(x, y, z) = − xi + yj + zk

(x2 + y2 + z2)
3
2

.

Click on the green square to return
�
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Exercise 1(e) The gradient of the function

f(x, y) =
4y

(x2 + 1)
= 4y(x2 + 1)−1 ,

is:

∇f(x, y) = 4y × ∂

∂x
(x2 + 1)−1 i + (x2 + 1)−1 × ∂

∂y
4y j

= 4y × (−1)(x2 + 1)−1−1 ∂

∂x
(x2 + 1) i + 4(x2 + 1)−1j

= −4y(x2 + 1)−2 × 2x i +
4

(x2 + 1)
j

= − 8xy

(x2 + 1)2
i +

4
(x2 + 1)

j .

Click on the green square to return
�
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Exercise 1(f) The partial derivatives of the function

f(x, y, z) = sin(x)ey ln(z)

are
∂f

∂x
=

∂

∂x
(sin(x)) ey ln(z) = cos(x) ey ln(z) ,

∂f

∂y
= sin(x)

∂

∂y
(ey) ln(z) = sin(x)ey ln(z) ,

∂f

∂z
= sin(x)ey ∂

∂z
(ln(z)) = sin(x) ey 1

z
.

Therefore the gradient is

∇f(x, y, z) = cos(x) ey ln(z)i + sin(x) ey ln(z)j + sin(x) ey 1
z

k .

Click on the green square to return
�
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Exercise 2(a) The directional derivative of the function

f = 3x2 − 3y2

in the unit vector j direction is given by the scalar product j ·∇f .
The gradient of the function f = 3x2 − 3y2 is

∇f = 6xi− 6yj

Therefore the directional derivative in the j direction is

j ·∇f = j · (6xi− 6yj) = −6y

and at the point (1, 2, 3) it has the value −6× 2 = −12 .

Click on the green square to return
�
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Exercise 2(b) The directional derivative of the function f =
√

x2 + y2

in the direction defined by vector 2i + 2j + k is given by the scalar
product n̂ ·∇f , where the unit vector n̂ is

n̂ =
2i + 2j + k√
22 + 22 + 12

=
2i + 2j + k√

9
=

2
3
i +

2
3
j +

1
3
k .

The gradient of the function f is

∇f =
x√

x2 + y2
i +

y√
x2 + y2

j + 0k =
xi + yj√
x2 + y2

Therefore the required directional derivative is

n̂ ·∇f =
(

2
3
i +

2
3
j +

1
3
k

)
·

(
xi + yj√
x2 + y2

)
=

2
3

x + y√
x2 + y2

.

At the point (0,−2, 1) it is equal to
2
3

0− 2√
02 + (−2)2

=
2
3
× −2

2
= −2

3
.

Click on the green square to return
�
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Exercise 2(c) The directional derivative of the function

f = sin(x) + cos(x) + sin(z)

in the direction defined by the vector πi + πj is given by the scalar
product n̂ ·∇f , where the unit vector n̂ is

n̂ =
πi + πj√
π2 + π2

=
i + j√

2
.

The gradient of the function f is

∇f = cos(x)i− sin(y)j + cos(z)k .

Therefore the directional derivative is

n̂ ·∇f =
i + j√

2
· (cos(x)i− sin(y) + cos(z)k) =

cos(x)− sin(y)√
2

and at the point (π, 0, π ) it becomes
cos(π)− sin(0)√

2
= − 1√

2
.

Click on the green square to return
�
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Solutions to Quizzes
Solution to Quiz:
The partial derivative of xyzx with respect to the variable z is

∂

∂z
(xyzx) = xy × ∂

∂z
(zx) = xy × x× z(x−1) = x2yz(x−1)

End Quiz
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Solution to Quiz:
Consider the function f(x, y) = x cos(y) + y , its derivative with re-
spect to the variable x is

∂

∂x
f(x, y) =

∂

∂x
(x cos(y) + y)

=
∂

∂x
(x)× cos(y) +

∂

∂x
(y)

= 1× cos(y) + 0 = cos(y) .

End Quiz
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Solution to Quiz:
The gradient of the function f(x, y) = x2y3 is given by:

∇f(x, y) =
∂f

∂x
i +

∂f

∂y
j

=
∂

∂x
(x2y3)i +

∂

∂y
(x2y3)j

=
∂

∂x
(x2)× y3i + x2 × ∂

∂y
(y3)j

= 2x2−1 × y3i + x2 × 3y3−1j

= 2xy3i + 3x2y2j .

End Quiz
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Solution to Quiz: The partial derivative of the scalar function
f(x, y, z) = x2yz − xy2z with respect to y is

∂f

∂y
(x, y, z) = x2 − 2xyz .

Evaluating it at the point (1, 1, 1) gives

∂f

∂y
(1, 1, 1) = 12 − 2× 1× 1× 1 = 1− 2 = −1 .

This is negative and therefore the function f decreases in the y direc-
tion at this point.
It may be verified that the function does not decrease in the y direction
at any of the other three points. End Quiz
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Solution to Quiz: The surface is defined by the equation

x2yz = 1.

To find its normal at (1, 1, 1) we need to calculate the gradient of the
function f(x, y, z) = x2yz:

∇f = 2xyzi + x2zj + x2yk .

At the point (1, 1, 1) this is

∇f = 2i + j + k

Thus the required normals to the surface are ±(2i + j + k). Hence
(d) is a normal vector to the surface. End Quiz
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Solution to Quiz: The surface is defined by the equation

cos(x)yz = −1 .

To find its unit normal at the point (π, 1, 1) , we need to evaluate the
gradient of f(x, y, z) = cos(x)yz:

∇f = − sin(x)yzi + cos(x)zj + cos(x)yk .

At the point (π, 1, 1) this is

∇f = 0i + (−1)j + (−1)k = −j − k

The magnitude of this vector is√
(−1)2 + (−1)2 =

√
2 .

Therefore the unit normal is

n̂ = − 1√
2
j − 1√

2
k .

End Quiz
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Solution to Quiz: The surface is defined by the equation

x2 + y2 + z2 = 169 .

To find its unit normal at point (5, 0, 12) we need to evaluate the
gradient of f(x, y, z) = x2 + y2 + z2:

∇f = 2xi + 2yj + 2zk .

At the point (5, 0, 12) this is

∇f = 2× 5i + 0× j + 2× 12k = 10i + 24k

The magnitude of this vector is√
(2× 5)2 + (2× 12)2 =

√
4× (25 + 144) = 2

√
169 = 2× 13 .

Therefore the unit normal is

n̂ =
5
13

j +
12
13

k .

End Quiz
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